

Mi lesz veled kiégett üzemanyag?

Fábián Margit

fabian.margit@ek-cer.hu

MAGYARORSZÁG ENERGIAMIXE 2019.04. - 2020.03.

Nukleáris energia Múlt? Jelen? Jövő?

1 t természetes U ~ 44 GWh(e) = 158 TJ(e) 1 t szén (Drax) ~ 2.6 MWh(e) = 9.4 GJ(e)

~ 17000x különbség!

Nukleáris energia előnyeivel járó két problémakör:

erőmű sérülés hulladék

Kérdés: hogyan lehet biztonságos tárolást megvalósítani, úgy hogy a környezetben lévő emberi életformát-tevékenységet ne veszélyeztessük

Honnan?

Hulladékok a teljes ciklus során keletkezik, azonban számottevően az üzemanyagciklus zárást követően kell számolnunk jelentős mennyiségű hulladékkal

nyílt üzemanyagciklus

zárt üzemanyagciklus

~700 USD/1kg fűtőelem

~1100 USD/1kg fűtőelem

Besorolás szerint:

 aktivitáskoncentráció szerinti jellemzés mérőszáma a veszélyességi mutató (S)

$$S = \sum_{i} \frac{AK_{i}}{REAK_{i}}$$

Kis aktivitású hulladék – LLW

nergiatudományi

ahol REAK a referencia aktivitáskoncentráció [Bq/kg]; AK az aktivitáskoncentráció, i a hulladékcsomag adott radioizotópja

- az összhulladék 90%-a; előkészítési folyamat során keletkezik a legnagyobb mennyiség
- veszélyességi mutatója: 1 < S < 1000

Közepes aktivitású hulladék - ILW

- összhulladék 7%-a; normál műkődési ciklus-, napi szintű üzemeltetés során keletkezik a legnagyobb mennyiségű ILW hulladék

- veszélyességi mutatója: 10³ < S <10⁶

Nagy aktivitású hulladék – HLW

 - összhulladék 3%-a, DE az össz-radioaktivitás 95%-a, leszerelés során- a kiégett fűtőelemekből- keletkezik a legnagyobb mennyiség

- leggyakoribb a ^{238, 239, 240, 241, 242}Pu, ²³⁷Np, ²³⁶U, ²⁴¹Am
- veszélyességi mutatója: S > 10⁶

Energiatudományi

Kutatóközpont

Egyesült Királyság-i adat:

 az össz-kiégett nukleáris fűtőelem (IAEA alapján):

Magyarországon a kiégett üzemanyag keletkezése:

Paksi Atomerőmű: 17716 kiégett kazetta, ~2130 t *Budapesti Kutatóreaktor*: 642 kiégett kazetta, ~140 kg *BME NTI Oktatóreaktor*: 32 kiégett ill. besugárzott kazetta, ~70 kg

HLW

Paksi Atomerőmű:

- Üzemelés alatt ~220 m³
- Leszerelés során: ~100 m³
 Intézményi (ipari, orvosi): 300-500 m³

Radioaktív hulladékok végleges elhelyezésére elfogadott megoldás a mélygeológiai tárolás:

A tárolás céljai:

- teljes elszigetelést biztosítson a tárolt radioaktív hulladék becsült bomlási idejére
- a tárolt hulladék NE jelentsen veszélyt az emberi életre és a környezetre
- a radioaktív hulladék kezelést úgy kell megoldani, hogy az összhangban legyen a társadalmi értékekkel, az etikai elvárásoknak megfeleljen
- Milyen aktivitással kell számolnunk?
- Az elhelyezést követően:

Energiatudományi

Kutatóközpont

- Jellegzetes L / ILW
- Jellegzetes HLW /SF

Kis és közepes aktivitású hulladéklerakók- LLW & ILW

Működő egységek

Bátaapáti Nemzeti Radioaktív hulladéktároló 2012-Tervezett befogadó térfogat: ~42.768 m³

> Loviisa – finn tároló 1998 – 110-120m mély

Nagy aktivitású hulladékok és kiégett fűtőelemek lerakó HLW & SF

Tervezés/építés alatt álló egységek Olkiluoto mélygeológiai tároló, Finnország

Forsmark, Svédország

Svédország pl.

Japán pl.

HAZAI helyzet

Magyarországon nagy aktivitású hulladék az 1960-as évektől keletkezik.

- > 1993 Nemzeti Projekt, kis és közepes aktivitású radioaktív hulladékok + a nagy aktivitású hulladékok elhelyezése, Bodai Aleurolit Formáció (BAF) vizsgálat
- > 1998 a vizsgálatok befejeződtek, 1999 a további folytatást a gazdasági miniszter elvetette
- > 2003-ban újra indult a nagy aktivitású hulladékok elhelyezését célzó kutatási program a Nyugat-Mecsekben, új Kutatási Program, amelyet a OAH-t felügyelő miniszter jóváhagyott
- > 2003 vizsgálatok a földalatti laboratórium helyszínének kiválasztására + megteremtették a kutatások informatikai hátterét, elkészült a felszín alatti földtani kutatások terve
- > 2004 elkészült a nagy aktivitású radioaktív hulladékok elhelyezésére vonatkozó terv
- > 2008 a kutatás hosszú távú programjáról szóló koncepcióterv
- > 2010 lezárult a kutatás I. fázisának 1. szakasza
- > 2014 újraindulnak a kutatások a Nyugat-Mecsekben
- > 2030 a földalatti kutatólaboratórium építésének megkezdése
- > 2055 a tároló építésének megkezdése

Jogi keretek:

- > Az Atomenergiáról szóló 1996. évi CXVI. Törvény (mod.2013)
- > 2011/70/EURATOM Irányelv

Energiatudományi

Kutatóközpont

 H/3787.számú 21/2015. (V.4.) országgyűlési határozati javaslata kiégett üzemanyag és a radioaktív hulladék kezelésének nemzeti politikájáról
 Nemzeti program, a nemzeti politika céljainak megfelelő megvalósítás Az Atomtörvény felhatalmazása alapján a kiégett üzemanyag és a radioaktív hulladék kezelése a Radioaktív Hulladékokat Kezelő Kft. feladata.

*** első hordók lerakása kb. 2065 eleje ***

T/13628.számútörvény javaslat Magyarország Kormánya és az Oroszországi Föderáció Kormánya közötti nukleáris energia békés célú felhasználása terén folytatandó együttműködésről szóló Egyezmény kihirdetéséről - 2014

7 cikkely/2 bekezdés. A Felek biztosítják, hogy Meghatalmazott Szervezeteik megállapodást (szerződést) kötnek a Megvalósítási Megállapodás alapján (összes alkotóelemükkel együtt) átadott használt fűtőelem-kazetták kezeléséről. Kezelés alatt az értendő, hogy a használt fűtőelem-kazettákat az Oroszországi Föderáció területére szállítják ideiglenes technológiai tárolás vagy technológiai tárolás és reprocesszálás céljából. A használt fűtőelem-kazettákat, vagy reprocesszálás esetén a nukleáris hulladékot Oroszországi Föderáció területén tárolják ugyanannyi időn keresztül, amely időtartamot a 7. cikk 1. bekezdésében említett megállapodás (szerződés) előír a nukleáris fűtőanyag ellátásra, ezt követően visszaszállítják Magyarországra.

Magyarországon

- 1981-ben létrejött a Központi Nukleáris Pénzügyi Alap (KNPA)
- a KNPA elkülönített állami pénzalap a Magyar Államkincstárban, működését az atomtörvény szabályozza:

 kizárólag az atomtörvény szerinti feladatok finanszírozására szolgál az atomerőmű üzemideje alatti befizetései fedezik az atomerőmű minden – a radioaktív hulladékokkal, a kiégett fűtőelemekkel és a leszereléssel – kapcsolatos költségét

~Az atomerőmű befizetésének számítása a közép- és hosszú távú terv adatain és nettó jelenérték számításon alapul, a diszkont tényező a jegybanki alapkamat "reálkamat" tartalma) ~

2019-es KNPA költségvetése, be: 27.053 MFt/ ki: 14.765 MFt

Általános nemzetközi iránymutatás; a villamos energiát termelő cégek, az értékesített áram árának az ~5%-t fizetik be, a leszerelésre és radioaktív hulladékkezelésre

PI. USA: 0.1 cent/kWh

Franciaország: 0.14 cent/kWh

- rengeteg tanulmány
- kiváló vizsgálati eredmények
- hasonló alapkoncepció

DE

NINCS jól bevált 'recept'!

- + a követelményekhez való igazodás
- + a társadalmi elfogadottság

A geológiai tárolást minden esetben többszörös védelmi rendszer kiépítésével valósítják meg: <u>természetes</u> és <u>mérnöki g</u>átak alkalmazásával

Többszörös gátrendszer:

Energiatudományi

(utatóközpont

Energiatudományi Kutatóközpont részt vesz

2 fő kutatási irány szerint

A radioaktív hulladéklerakó rendszerek geokémiája: makro- és mikroszkópi módszerek kifejlesztése a radionuklidok viselkedésének kutatására agyagjellegű kőzetekben

- Ib-4 (540 m)
- Delta-11 (1000 m)

Nagy aktivitású radioaktív hulladékok kondicionálása, összetétel optimálás, szerkezet meghatározás

molibdátokboroszilikátok

<u>1. természetes g</u>átak alkalmazása

Radionuklidok kikerülése hulladéktárolóban

Bodai Agyagkő Formáció -250 Ma -vörös és vörösesbarna szín dominál, oxidatív képződési körülményekre utal - vastagság ~1000 m

A radionuklidok viselkedésének kutatása agyagjellegű kőzetben

FLUO, ANKA

a

Agyagos

Üregkitöltés albit és karbonát

1 mm

mátrix

✓ Röntgen pordiffrakció: nem jelentős (< 10 %) duzzadó agyagtartalom;

✓ 10-20 % közberétegzett klorit/szmektit agyagásvány 50
 % duzzadó komponenssel az lb-4 (540 m) mintában.

Radionuklidok migrációja: diffúzió

5-8 mm vastag szelet, az agyagkő fúrómagjából

Áttörési kísérlet: az agyagkőszelet másik oldalán mikor jelennek meg a radionuklidok

In-diffusion with reservoir depletion

A - idő függvényében a radionuklidok koncentrációjának csökkenése az oldatban

At

B - idő függvényében a radionuklidok milyen mélyre hatolnak be az agyagos kőzetbe

Energiatudományi Kutatóközpont Radionuklidok migrációja: szorpció, megkötés

- szerkezet hasonló másodlagos
- szín és mikrostruktúra: indirekt bizonyíték FeOOH keletkezésére
- kontroll kísérletek: UO₂²⁺ pH 8.0 vagy Ni²⁺ pH 6.8 → vörös gyűrűk nem láthatók
- Mikro-XRF (a) elemtérképek: Ca, U, Fe
- Polarizációs optikai mikroszkópia (c): új vöröses színű fázis az ankerit helyén
 - LVSEM (b,d): szivacsos szerkezet

2. mérnöki gátak alkalmazása

Kis- és közepes aktivitású hulladékok kondicionálása

1. kerámiában

- a kristályos szerkezetben csak nagyon specifikus helyekre tud beépülni a radionuklid

- pl. az oktaéderes TiO₆ alkotta alagútba épülhet be a ¹³⁷Cs és ⁹⁰Sr (Anglia). Max.
12% hulladéktárolás

- a NaZr₂(PO₄)₃ kristályos anyag hulladéktárolási képességeit vizsgálja a Savannah River-ben lévő kutatóközpont

A SYNROC típusú, többfázisú kerámiát különböző összetétellel pl. BaAl₂Ti₆O₁₆, CaZrTiO₂O₇, BaAl₂Si₂O₈, KAlSiO₄, CaTiO₃, tárolóanyagként használják. A kristályos kerámia tároló "kapacitása" alacsonyabb mint az üvegnek, max. 20% hulladékot tud magába tartani.

2. cementben

- kis- és közepes aktivitású folyadék&szilárd állapotú hulladékok tárolása

A radionuklidok a térhálós cement különböző fázisain kötődnek meg, stabilizálódnak!

- elsőként az Oak Ridge National Laboratory és Pennsylvania State University-n (1988) dolgoztak ki tároló összetételt, max. 15-20% hulladéktárolás
- 200/500 l hordók

PI. alkalmazott összetétel: SiO₂, CaO, Al₂O₃+H₂O, FeO + adalék a Portland Cement Association, IL;

- *előny*: gazdaságos előállítás, jól ismert technológia, legtöbb környezetben stabil, jó termikus stabilitás

Folyamatos technológia+összetétel optimalizásás

- Új adalék anyagok
- Beépülési arány javítása

Kihívás: ? stabil megkötés ? ASTM szabvány szerinti kioldódás ? öregítés (hő)

- fontos a kitöltési forma, elhelyezés

WA-BNF-2/7

EC2-MA-20

WA-COG-6

WA-COG-2

WA-COG-4A/6A

Bátaapáti L/ILW tároló, 200-250m mélység

Energiatudományi **Bátaapáti** L/ILW tároló, 200-250 m mélység Kutatóközpont Eredeti koncepció: 2.25m x 2.25m x 1.4 m ~7m³; Hulladék térfogat: 1.8 m³

Új koncepció: 1.35m x 1.35m x 1.05m ~2m³; Hulladék térfogat: 1.8 m³

Nagyaktivitású hulladékok kondicionálása

3. üvegben

Kondicionálás (stabilizálás) üvegben = vitrifikáció (a vitrifikálás során a hulladékot magas hőmérsékleten olvadt üvegképző anyagokkal keverik össze, majd a keveréket gyors hűtik.) - az üveg tároló "kapacitása" ~30% hulladék

Nagyaktivitású hulladékok kondicionálása

Friss konténer kb. 15000TBq α és β – sugárzást elnyeli a konténer γ – sugárzást nem árnyékolja a konténer Pl. ¹³⁷Cs -erős γ kibocsájtó, a

konténertől – védelem nélkül -

1-2 m is halálos

Egy konténer 400 kg üvegesített hulladékot tartalmaz, amiből 11 kg a hulladék

EU vitrifikációs kapacitása 1000 t/év hulladék

Hol kapcsolódunk be a 'körforgásba'?

Franciaország: Marcoule 1978-2012, La Hague 1989- (~1600 tonna/év)

Egyesült Királyság: Sellafield 1990- (~2200 tonna/év)

Belgium: Dessel 1993-

Egyesült Államok: Savannah River Site (Defense Waste Processing Facility) 1996-

Japán: Tokai 1995-2028 (~1140 tonna/év)

Németország: Karlsruhe 2010-2060

A nukleáris hulladékanyag tárolására kifejlesztett üvegösszetételek, tömeg%-ban:

									-
	SiO ₂	P_2O_5	B ₂ O ₃	Al_2O_3	CaO	MgO	Na ₂ O	adalék	
								\bigcirc	
R7T7 – Franciaország	47.2	-	14.9	4.4	4.1	-	10.6	18.8	
DefenseWasteProcessing Facility - USA (SRS)	49.8	-	8.0	4.0	1.0	1.4	8.7	27.1	?
Magnox - Anglia (Sellafield)	47.2	-	16.9	4.8	-	5.3	8.4	17.4	?
Defence HLW - Oroszország (Nizhnekansky)	-	52.0	-	19.0	-	-	21.2	7.8] ?
P0798 – TVF - Japán	46.6	-	13.4	4.2	2.5	1.5	9.1	23.1	
SL-1 – NNP - Kína	34.3	2.0	18.0	5.0	10.0	3.0	25.0	2.6	

Néhány példa az irodalomból és problémák:

W.G. Ramsey; WSRC-MS-1994-0550 Sok összetevő: SiO₂, B₂O₃, BaO, Al₂O₃, La₂O₃, Nd₂O₃, CeO₂, PbO Tárolóképesség: $20s\%UO_2$ drága 2lépéses előállítás ***

```
T. B. Edwards; WSRC-TR-2005-00370
Nagyon sok összetevő: AI_2O_3, B_2O_3, BaO, CaO, Ce_2O_3, Cr_2O_3, CuO, Fe_2O_3, K_2O, La_2O_3, Li_2O, MgO, MnO, Na<sub>2</sub>O, NiO, PbO, SO<sub>4</sub>, SiO<sub>2</sub>, ThO<sub>2</sub>, TiO<sub>2</sub>, ZnO, ZrO<sub>2</sub>
Tárolóképesség: 3,7s\%U_3O_8 átkristályosodás
```

S.V. Stefanovsky; Journal of Alloys and Compounds 444–445 (2007) 618 Összetevők: Al₂O₃, CaO, TiO₂, MnO, Fe₂O₃, ZrO₂ Tárolóképesség: 10s%UO₂ kristályos-kerámia szerkezet

```
S. V. Stefanovsky; Glass Physics and Chemistry 34 (2011) 292
Nagyon sok összetevő: AI(OH)_3, Ba(OH)_2*8H_2O, Ca(CO)_3, Cr_2O_3, CuO, Fe_2O_3, KNO_3, 4MgCO_3*Mg(OH)_2*5H_2O, MnO_2, NaOH, Ni_2O_3, Pb(OH)_2, SiO_2, SrCO_3, ZnO, ZrO_2, NaF, AICI_3*6H_2O, KI, AIPO_4*6H_2O, Na_2SO_4, H_3BO_4, Li_2CO_3
Tárolóképesség: 11,7s%U<sub>3</sub>O<sub>8</sub> átkristályosodás, instabil szerkezet
```


Cél

Magas urán/lantanoida (aktinoida helyett) koncentrációjú boroszilikát üvegek előállítása és szerkezetvizsgálata.

Kérdések: mennyire stabil a szerkezet? az urán/lantanoida, hogy és hol épül be az üvegszerkezetbe?

Energiatudományi Miért az üveg?

Vizsgált mintáink előnyei:

Kutatóközpont

- termikus-kémiai stabilitás
- savas-bázikus közegben nem oldódnak
- jól tűrik a sugárzást és abszorbeálják
- gazdaságos előállítás

90/70s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂] +10/30s%Nd₂O₃ 90/70s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂] + 10/30s%Eu₂O₃ 70s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂]+20s%UO₃+10s%CeO₂ $70s\%[SiO_2-B_2O_3-Na_2O-BaO-ZrO_2]+20s\%UO_3+10s\%Nd_2O_3$ 70s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂]+20s%UO₃+10s%Eu₂O₃ 70s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂]+10s%UO₃+10s%CeO₂+10s%Nd₂O₃ 60s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂]+10s%UO₃+10s%CeO₂+10s%Nd₂O₃+10s%Eu₂O₃ 60s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂] + 40s%UO₃

90/80/70s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂] + 10/20/30s%UO₃

90/70s%[SiO₂-B₂O₃-Na₂O-BaO-ZrO₂] + 10/30s%CeO₂

Max. befogadóképesség: 40%UO₃

Vitrifikáció laboratóriumi körülmények között: kb. 25g mintamennyiság, nagy tisztaságú vegyszerek

Mintaelőállítás

- elektromos felfűtésű kemencében olvasztással
- üveg olvadása 1300-1450°C, 3-5 óra
- gyors hűtés
- golyós achátmalomban őrlés
- -- B-11 izotópos minták a természetes B (¹⁰B) nagy -neutron abszopciója miatt (B₂O₃)

- a valós elemi koncentrációt a mintában a PGAA módszerrel ellenőriztük

Mátrix-30Ce

Mátrix-30Nd

Mátrix-30U

Mátrix-20U

Neutron- és röntgendiffrakció alkalmazás

<u>A diffrakció az egyik legjobb és leghatékonyabb módszer, hogy információt kapjunk</u> az anyag atomi szerkezetéről

a röntgenszórási hossz Q függő – monoton növekedést mutat az atomszámmal

The diameters of the circles shown scale with the scattering amplitude $f_x (\sin \Theta = 0)$ for x-rays, and b_{coh}^* 10 for neutrons. Hatching indicates negative scattering amplitudes.

a <u>neutronszórási amplitudó</u> elemről elemre változik – szabálytalan változást mutat az atomszámmal

Energiatudományi Szerkezetvizsgálat

Neutrondiffrakció

Kutatóközpont

PSD, BNC

HIPPO, LANSCE

λ=0.17-4.2 Å Q=0.9-40 Å⁻¹

λ=0.15-4 Å Q=0.7-35 Å⁻¹

λ=0.726 Å Q=0.52-18 Å⁻¹

7C2, LLB

Q=0.5-25 Å⁻¹ 109.5 keV

ID22, ESRF

Q=0.8-22 Å⁻¹

70.8 keV

+ MAGIC 600 MHz NMR 14.1T

Teljes Szerkezeti Függvény, S(Q)

Meghatározható:

szórási hossz

Figyelembe véve: mintatartó, háttér, abszorpció Normálva a fluxusra, detektor beütésszáma/monitorszámláló

Adatfeldolgozás: Fordított Monte Carlo (RMC) szimuláció

- az RMC szimulációval modellezhetjük az atomok elhelyezkedését
- részecskék 3D konfigurációjának felépítése
- az illesztés megkötései: az atomi sűrűség, két atom közötti legkisebb távolság (cut-off), koordinációs kényszer

$$S_{ij}(Q) = 1 + \frac{4\pi\rho}{Q} \int_{0}^{\infty} r \left[g_{ij}(r) - 1 \right] \sin Qr \, dr \qquad S(Q) = \sum_{ij}^{k} w_{ij} S_{ij}(Q)$$
$$\chi^{2} = \sum \frac{\left(S^{RMC}(Q_{i}) - S^{EXP}(Q_{i}) \right)^{2}}{2} \qquad \chi^{2}_{new} < \chi^{2}_{old}$$

$$W_{ij} = \frac{c_i c_j b_i b_j}{\left(\sum\limits_{i,j=1}^n c_i b_j\right)^2}$$

g_{ij}(r) parciális atomi párkorrelációs függv. S_{ij}(Q) parciális szerkezeti függv. S(Q) szerkezeti függv.

 $\exp(-(\chi^2_{new} - \chi^2_{old})/2)$

70s%[SiO₂(65-x)-B₂O₃(x)-Na₂O(25%)-BaO(5%)-ZrO₂(5%)]+30s%UO₃ x=5-10-15-20%

	Súlyfaktor, w _{ij} (%)									
UB10	Si-O	B-O	0-0	Na-O	Zr-O	U-O	U-Na	U-Si		
ND	14.03	9.33	40.78	10.81	4.13	6.20	0.82	1.06		
XD Q=1.02Å ⁻¹	7.50	0.46	7.80	4.69	5.59	17.66	4.48	8.57		

(Q)

Neutron- és röntgendiffrakciós mérések a B10 és UB10 mintákra

Interferenciafüggvény

Teljes radiális eloszlásfüggvény

Hat-komponensű összetételek/ Urán-tartalmú minták

Parciális párkorrelációs függvények és a koordinációs számeloszlás:

vegyes láncok ^[3]B-O-Si és ^[4]B-O-Si alakulnak ki

Hat-komponensű összetételek/ Urán-tartalmú minták

Másodszomszéd távolságok az UB5-10-15-20 üvegsorozatra

Hat-komponensű összetételek/ Urán-tartalmú minták

U-O parciális párkorrelációs függvény: 90;80;70;60s%Mátrix*-10;20;30;40s%UO₃ (Matrix-U10; U20; U30; U40)

Kioldódási kísérletek a Mátrix-U20 és Mátrix-U40 mintákon

Conditions Leach period and temperature	Samples, bulk					
	T20; 80w%MATRIX-	T40; 60w%MATRIX-				
	20w%UO ₃	40w%UO3				
	mg/L, ppm	mg/L, ppm				
3 days, 22°C	0.0295 ± 0.0006	0.0313 ± 0.0004				
7 days, 40°C	0.161 ± 0.0022	0.0164 ± 0.14				
11 days, 70°C	0.393±0.0051	0.0470 ± 0.0003				
40 days, RT	0.564 ± 0.0069	0.0653 ± 0.0005				

Conditions Leach period and temperature	Samples, powder					
	P20; 80w%MATRIX-	P40; 60w%MATRIX-				
	20w%UO ₃	40w%UO3				
	mg/L, <u>ppm</u>	mg/L, ppm				
3 days, 22°C	4.00 ± 0.11	5.74 ± 0.044				
7 days, 40°C	4.23±0.074	12.6±0.14				
11 days, 70°C	6.08 ± 0.089	36.1±0.32				
40 days, RT	31.1±0.41	92.7±0.42				

Stabil szerkezet?

Ellenőrzés: neutrondiffrakciós mérés 2évente +RMC szimuláció

nincs
 kristályosodás

- stabil amorf szerkezetünk van

nem
 higroszkópos,
 nincs H jelenlét

Aktivitás?

 1. Mérés Berthold LB123 sugárvédelmi műszer ✓ felszíni szennyeződés ✓ neutron-gamma- dózis ✓ aktivitás mérés 		 2. Mérés SSM-1 sugárvédelmi mérőeszköz ✓röntgen ✓alfa, béta és gamma sugárzásszennyeződ ést mutat 		 3. Mérés VAJ-15-A RFT sugárvédelmi dózismérő. ✓ röntgen- gamma sugárzást mért 		 4. Mérés Geiger-Müller számláló-csöves sugárzásmérő ✓ counts/sec (cpm) 			
	µSv/h		µSv/h			µGy/h			cpm
Háttér	0.008	Háttér	0.2		Háttér	6.9		Háttér	3.0
UO ₃	0.02	UO ₃	1.5		UO ₃	29.0		UO ₃	2000.0
8.1	0.011	8.1	0.22		8.1	7.0		8.1	4.0
8.2	0.010	8.2	0.2		8.2	7.1		8.2	9.0
8.3	0.009	8.3	0.2		8.3	7.0		8.3	10.0
8.4	0.008	8.4	0.23		8.4	7.05		8.4	6.0

giatudományi tóközpont

- Hulladék tárolás egyik legfontosabb lépése a természetes és mesterséges gát rendszer
- Magyarország perspektivikus agyagkőzettel rendelkezik
- ✓ A ILW/HLW kondicionáló anyagának fejlesztése napjainkban is kihívást jelent
- A SiO₄ és BO₃/BO₄ alapú boroszilikát üvegek biztató eredményeket mutatnak
- ✓ A 30/40s% stabilan beépülés szintén jó eredmény

Feladatok

- új furatmagok geokémiai vizsgálata
- kioldódás vizsgálatok és az üveg korróziós tulajdonságainak megértése
- modell konténer készítés, felületi jelenségek vizsgálata
- mechanikai tulajdonságok vizsgálata

