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Where 1s Birmingham?

 Midland of England
 High Speed Railways
Centre

 Energy Centre (Energy
Capital)/Energy Valley

 Manufacturing Centre

 1st Industrial Revolution:

Watt’s factory for steam

engines



Introduction

Engineering Programme: Top 10 (2021 REF)

Birmingham Energy Institute: Smart Grid, Energy
Storage, Hydrogen, Railways, Energy Material, etc

Smart Grid Research Focus: Digitalised Energy
System - making renewable energy integration more
efficient, reliable and flexible

Electrical Power and Control Systems Group: 7
staff + 20 PhD students
&0

Two MSc Programmes in Electrical Power
Systems: a cohort of 100+ students annually
— one-year taught MSc programme

— two-year mixed taught/rwmp?w@mm L
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Grand Challenges and Solutions

O Increase in population by 25% from 2010 to 2040 (6B -> 9B)

0 Massive integration of renewable energy sources (wind, solar
and wave) far away from load centres: low inertia system =
Gone with wind is happening

0 Massive integration of electric vehicles: very soon gone with
EVs

O Distributed generation/micro-grid/demand response: Big hope
Is that demand would follow generation

O Systematic grid interconnections between existing power gfi
bring benefits and trade opportunities

0O Complex coupling between electricity, transport, gas & hea
O The key is to bring flexibility to source, grid and load:

— System interconnection: HVDC, FACTS, and other emerging technologie
— Energy storage

JY S1oTe9 o . I
— Data analytics and Artificial Intelligence

0




Challenge of Low Inertia Power Systems

O Blackout in Great Britain Power Grid on August 9th, 2019

At 16:52 a series of events happened on the electricity system, resulting in the
disconnection of approximately 1 million customers, 1GW loss of load.

Revealing the problems of poor performance of offshore wind power,
inappropriate protection setting of distributed PV, system risks because of reduced
inertia.
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Challenge of Energy Market Balancing and
Costs

Coinciding with the reduced demand
due to the COVID-19 pandemic and
high level of renewables output,

the GB electricity system has seen a
balancing cost of £718 million this

spring and summer 2020, which is
39% higher than the expected cost

this period. W/
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Framework for Future Energy
Interconnection

Inter-
continental

Continental Continental Wide Electricity Network

Trans-
national layer

National
layer

Community
layer

Integrated Electricity, Gas, Heat Network &
Transport (Smart Communities)
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Consumer

layer Smart Homes, Smart Buildings, Smart

Charging Facilities & Smart Consumers



Framework for Future Energy Integration: Energy
Internet/Interconnection




Framework for Future Energy Interconnection
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Flexibility is critical for Energy

Integration/Interconnection

O The key Is to bring flexibility to source, grid and
load

O Flexible AC Transmission Systems: Change
Impedance, control power flow/voltage/stability

0 High Voltage DC Transmission Systems

— LCC HVDC (Thyristor)
—VSC HVDC (IGBT)
80

— LCC/VSC (Hybrid)

0 Power Electronic Interface for Renewable

Generation/Energy Storage/EI@ctriga{k[ AN




Historic Development of HVDC

O
O

O

O

1920s: the mercury arc rectifier emerged

1954: the mercury arc valve technology used in a commercial LCC
HVDC project, Gotland 1

1970: The thyristor valve first came into use in LCC HVDC
applications and from that time forward the limitations of LCC HVDC
were largely eliminated

1997 VSC HVDC (using IGBT), known as HVDC Light, introduced
by ABB, with transmission not more than 50 MW, very high power
loss

2010: 1st £800kV, 6.4 GW LCC UHVDC commissioned by Stat
Grid Corporation of China, > 2000 km &0

2010: Trans Bay Cable project was the first HYDC system to use
the Modular Multi-Level Converter (MMC) HVDC system. 53 mi
(85 km) cable, 400MW, DC voltage of =200 Kv

2020: Multiterminal =500kV MMC HVDC




LCC HVDC vs VSC HVDC

Line Commutated Converter (Thyristor Valve) mp LCCHVDC
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Comparison of DC and AC Transmission

500kV 300~500km
AC 1000kV 1000~2000km SGW
DC +500kV 500~1500km 3GW
DC +800kV 1000~2000km 8GW
DC +1100kV 1500~3000km 12GW

Long distance bulk power trans
transmission




HVDC/UHVDC Projects in China

Formed with more than 20 UHV lines and the cross
region power transmission will reach 450GW

L & &

| China’splan for
IN"T " UHV grids by 2020
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UHVDC in China: =800 kV, 5GW
Converter Station




VSC/MMC HVDC Projects in China

(SGCCQC)

Project Time in operation Basic profile
e MMC
Nanhui HVDC project 2011.07 ® Transmission capacity: 20MW
SGCC : ® DC voltage: +30kV
( ) ® DC cable length: 8.6km
_ . e MMC
Nanao 3 .termmal HVDC 2013.12 ® Transmission capacity: 200MW
project (CSG) ® DC voltage: +160kV
Zhoushan 5-terminal S E/”V'C ¢ distance: 40k
. ongest distance: 40km
HVI()SCGI::'::))JeCt 2014.07 ® DC voltage: +200kV
e MMC
Xiamen HVDC project 5015.12 ® Distance: 10.7km
(SGCCQ) . ® Transmission capacity: 1000MW
® DC voltage: £320kV
Zhangbei 4-terminal . M dictance: 648 k
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M_MC HVD.C G.I‘Id project 2020.06 ® Transmission capacity: 4500MW
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HVDC Interconne_ctors in EU




UK’s HVDC Interconnectors

O Operational: 8GW, 7 projects
O Construction: 4.8GW, 4 projects

O Planning: 23.7GW, 18 er B




UK’s HVDC Interconnectors
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HVDC Corridors in Germany
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Classic LCC (Line Commutated Converter)
HVDC vs MMC VSC (Voltage Sourced
Converter) HVDC

Main advantages Main Disadvantages
* Lower power loss  « \Julnerable to AC faults

* High power « Commutation failure at
« Manageable DC Inverter side
fault current » Large Q consumption of
 Mature converter stations
technology » Inability of fast dynamf®
* Lower costs reactive power and AC

voltage control
: a)db@m{&pM —




Consequences of Commutation

Failure
Disruption of P transfer (up to tens of GW)
Freguency increase at Frequency drop at
sending end receiving end
L 8 £ 2

Generator tripping

Activation of spinning
reserve
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Existing Solutions to Commutation
Failure

O Existing solutions only focused on reducing
commutation failure probability

1 No solution iIs able to eliminate commutation failure
O EXxisting solutions into 3 categories

— Capacitor-commutated converter (CCC) based
HVDC
&0

— Reducing DC current
— Installation of additional reactive power

compensation devices (SVC, STATCOM,
Synchronous CondenserW L




Transforming Classic LCC HVDC
into Flexible LCC HVDC

Main advantages

* Not vulnerable to AC
faults

* No commutation failure
at inverter side

* Provide Q control of
converter stations @0

* Provide fast dynami
reactive power.and AC

 Lower power loss

 Higher/moderate
power

« Not vulnerable to
DC fault current

 Smaller footprint
* Lower costs
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Major Technological Developments in
Flexible LCC HVDC

O Basic Topology: Elimination of Commutation Failure

O Basic Topology: Reactive Power and AC Voltage
control

O Enhanced Topology: Elimination of AC Filters

O Further Enhanced Topology: Series Capacitor
Compensation with reduced costs

0 Special Topology: Application in UHVDC Systems
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Basic Topology: Commutation
Failure Elimination

Inverter AC bus
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Basic Topology: Flexible LCC HVDC

O LCC HVDC + Controllable Capacitor

O Commutation from TY1to TY3
— with increased effective commutation voltage,;
— I, will reduce from |, to zero;
— Iz will increase from zero to |;
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Basic Topology:
Reactive Power and Vac Control

Id

Qref — — — ﬂ /It’F AC System
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Y. Xue and X. P. Zhang, "Reactive Power and AC Voltage Control of LCC HVDC

UNIVERSITYOF Eﬁéfﬁ&%&g an  System With Controllable Capacitors,” IEEE Transactions on Power Systems, vol.
BIRMINGHAM PHYSICAL SCIENCES 32, no. 1, pp. 753-764, Jan. 2017.




Enhanced Topology:
Elimination of AC Filters (1 of 3)

-
Inverter ﬂ —@ | =AC System
AC Filter
4 Banks

Y. Xue, X. P. Zhang and C. Yang, "AC Filterless Flexible LCC HVDC with Reduced
UNIVERSITYOF Eﬁéfﬁ&%&g anp  Voltage Rating of Controllable Capacitors,” IEEE Transactions on Power Systems,
BIRMINGHAM PHYSICAL SCIENCES  vol. 33, no. 5, pp. 5507-5518, Sept. 2018, doi: 10.1109/TPWRS.2018.2800666.




Enhanced Topology:
Elimination of AC Filters (2 of 3)

O AC filters
— Space (around 50% of the converter station footprint)
— Costs (up to 10%)
— Losses (9% per station)
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Enhanced Topology:
Elimination of AC Filters (3 of 3)
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Further Enhanced Topology:
Series Capacitor Compensation with
reduced costs

e o Era « reduced equipment
v gy 136 ) g, cost due to the
Ca reduced numbers of

P W’C"PY“ CapYacCapYab ’g Y_ CT’bl
._ﬁ}%:@% controllable
LYb Inverter -
] .Y | C; |_|_\ { Zinv AC source CapaCItO )
Il * reduced capitalized

r cost of losses due to
the reduced
numbers of
controllable
capacitors
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Y. Xue, X. Zhang and C. Yang, "Series Capacitor Compensated
AC Filterless Flexible LCC HVDC With Enhanced Power Transfer
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¥y BIRMINGHAM | puvsicasciences  Systems, vol. 34, no. 4, pp. 3069-3080, July 2019, doi:
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Special Topology:
Applicat}on in UHVDC Systems

A
+800kV S- E TBCC AC System
or above \
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LCC HVDC & 3 Flexible LCC HVDC
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Comparison of Investment Costs
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Comparison of Life-cycle Costs

Life-Cycle Cost of Inverter (p.u.)
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Conclusions

O Flexible LCC HVDC has overcome all the
major disadvantages of LCC-HVDC, and can

— Eliminate commutation failures of multi-
Infeed systems

— Provide fast dynamic reactive power
control (P, Q control)
— Work with weak AC system @
&0

— Reduce footprint by removing AC filters

W;




Conclusions

0O Commercially Flexible LCC HVDC as Next
Generation LCC HVDC becomes attractive for
upgrading existing LCC HVDC or new HVDC
projects
— Modular design
— Easy implementation

— Cost effective solution
O IGBT/IGCT can be used for the controllable
capacitors e

0 Based on the economic analysis, Flexible LCC

HVDC is a very efficient, reliable and flexi
L
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