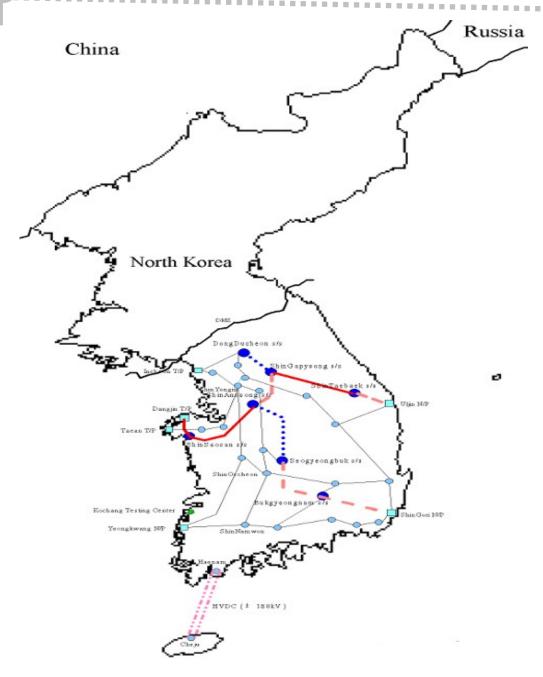
THE SOUTH KOREA TRANSMISSION NETWORK

OVERVIEW OF

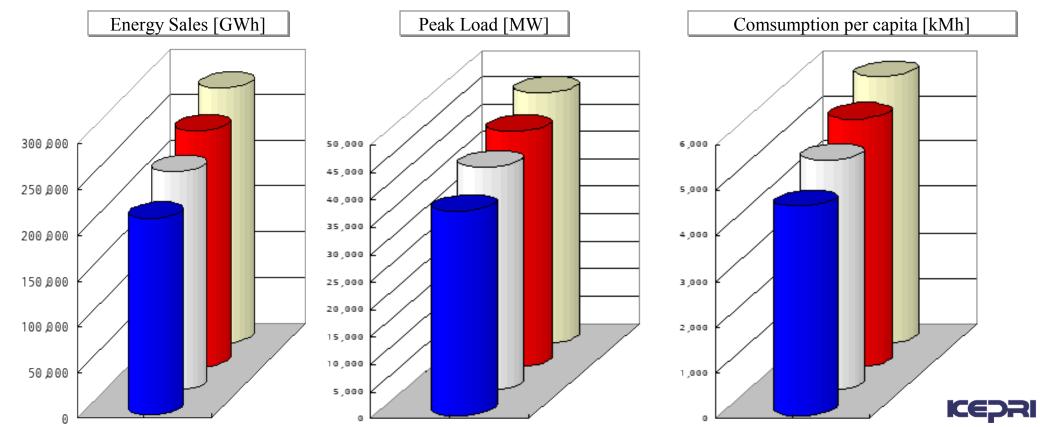

(with particular emphasis on the recently commissioned 765kV Network)

T. I. Jang*, D. I. Lee*, G. J. Jung*, J. S. Ahn*, J. Y. Koo** *KEPRI, **Hanyang University

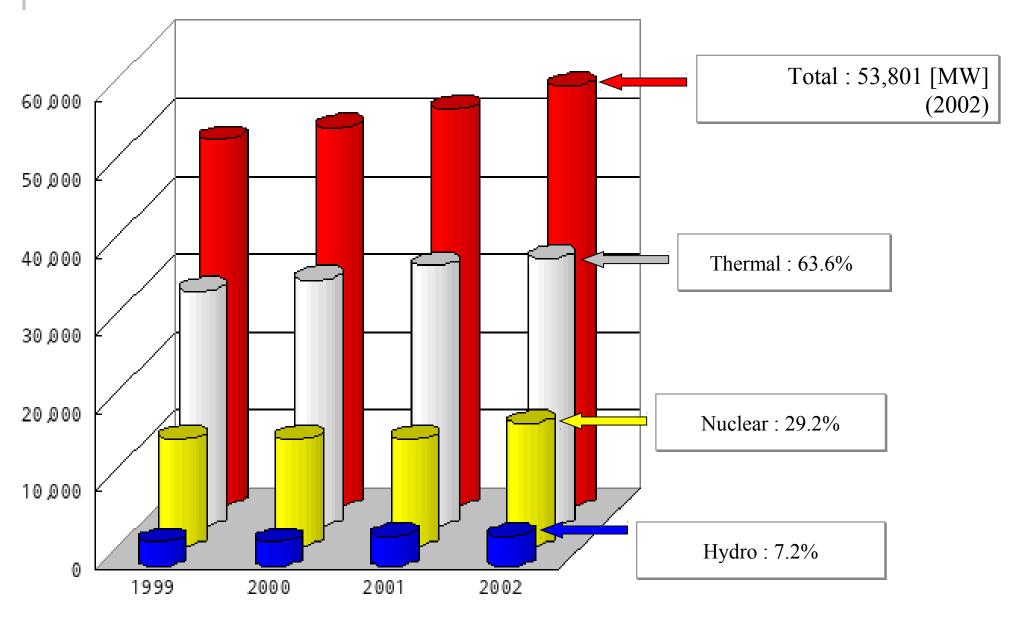
KOREA ELECTRIC POWER RESEARCH INSTITUTE

345 & 765kV Transmission Lines of Korea

1st Project 2nd Project 3rd Project 345kV T/L

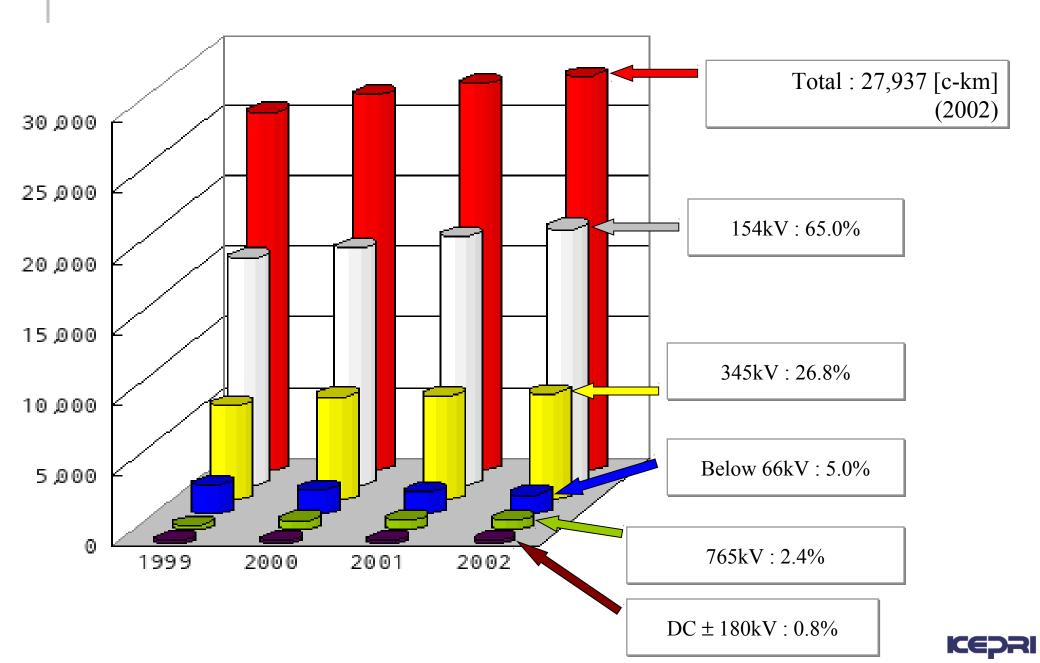


• Overview of Korea Power Statistics

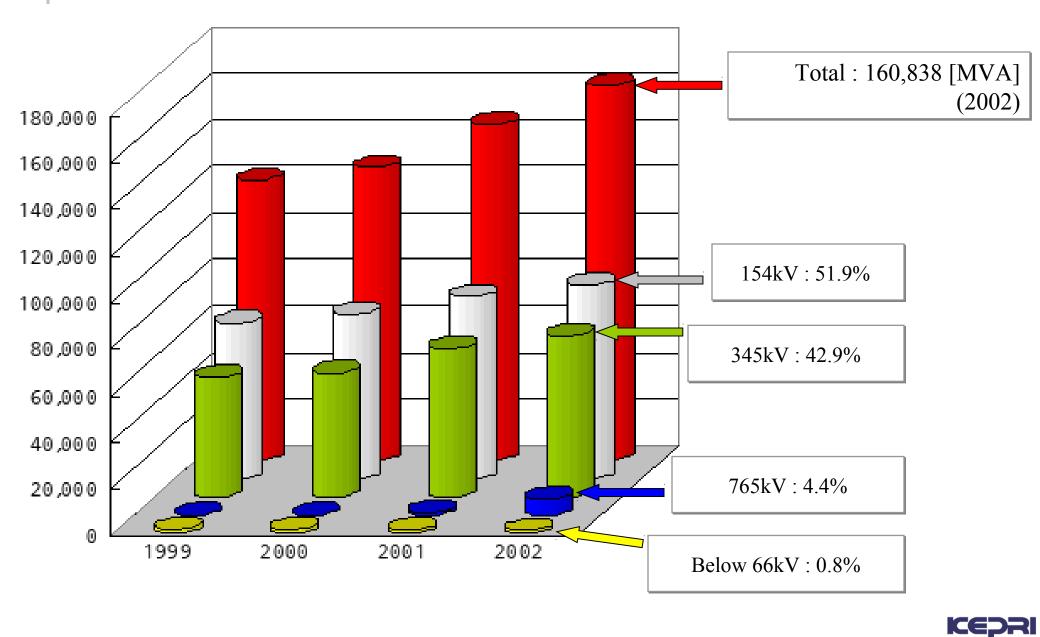

- Load
- Generation
- Transmission Lines
- Substation
- Introduction of Korea 765 kV System
 - Transmission Lines
 - Substation

Load Trends of Korea

Item Ye	ear 1999 📄	2000	2001 📄	2002 🔁
Energy Sales [GWh]	214,215	239,535	257,731	278,451
Increase per annum [%]	10.7	11.8	7.6	8.0
Peak Load [MW]	37,293	41,007	43,125	45,773
Increase per annum [%]	13.0	9.9	5.2	6.1
Consumption per capita [kWh]	4,572	5,067	5,444	5,845
Increase per annum [%]	9.7	10.8	7.4	7.4



Trend of Generating Facility



Trend of Transmission Line Length

Trend of Capacity of Transformer

• Transmission Lines: 330 km (1st Project)

- Conductor : ACSR 480 mm² \times 6 Bundles
- Ground Wire : AW 200 mm², OPGW 200 mm²
- Switching Surge : 1.9 p.u. & TOV : 1.2 p.u.
- Tower Foundation : pad & chimney, pier etc.
- Tower Design
 - Type: Pipe Span: 500~600 m
 - Height: 80~100 m Weight: 70~100 tons
- Insulator String : 300 kN, 400 kN, 530 kN

• Substation: 4 substations (1st Project)

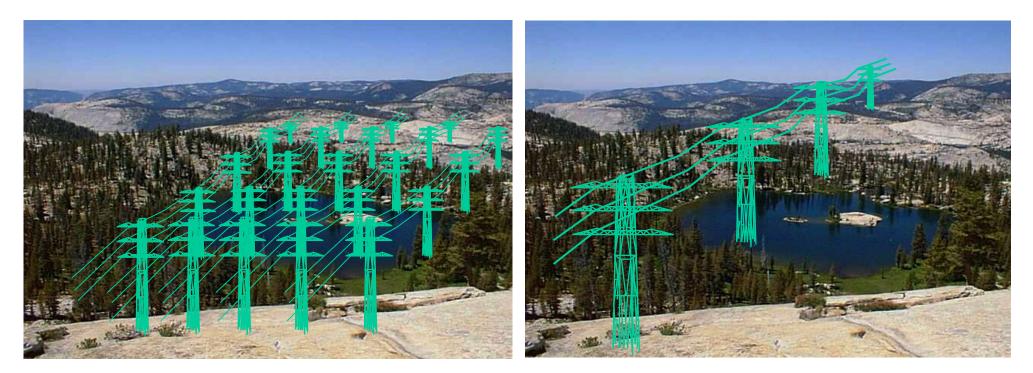
- Type: outdoor GIS
- BUS Scheme: 2 BUS 1.5 CB
- 765 kV 8 T/L, 4 Transformer Bank (or 5 Bank)
- Site Area: approximately 235,000 m²
- Transformer: 1 Ph, 666 MVA × 3 (765/345/23 kV)
 - BIL: 2,050 kV Weight: 150 tons
- Circuit Breaker: rated current → 8 kA
 - BIL: 2,250 kV Short Circuit Cap.: 50 kA


Characteristics of Korea 765kV Upgrading

• Necessities

- \bullet Increasing Rate of Peak Demand : average 10 % / year
- Difficulty of Obtaining on Rights-of-way

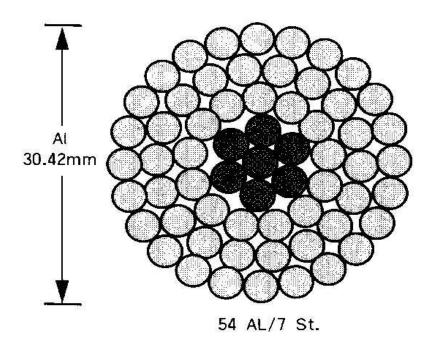
• Upgrading Advantage (765kV : 345kV)


• Increasing of Transmission Capacity

9

- Decreasing of Transmission Loss : 20 % of 345 kV
- Decreasing of Tower Area : 50%
- Decreasing of Transmission Line Route Area : 30 %

53% of 345kV

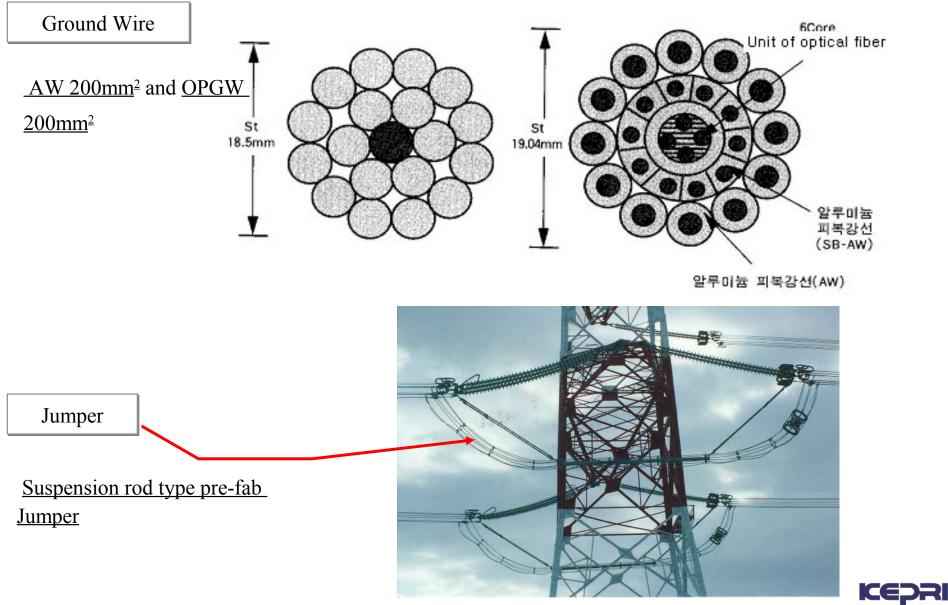

Conductor

Kind of Conductor	Stranded wire composition	Calculated sectional (mm ²)	Tensile strength (kg)	Outer diameter (mm)	Weight (kg/km)	Coefficient of elasticity	Coefficient of linear expansion (106 / °C)
ACSR 480mm ² (Cardinal)	Al 54/3.38 St 7/3.38	Al 484.53 St 62.81	15,300	30.42	1,836	7,987	19.53

Cross sectional view of wires

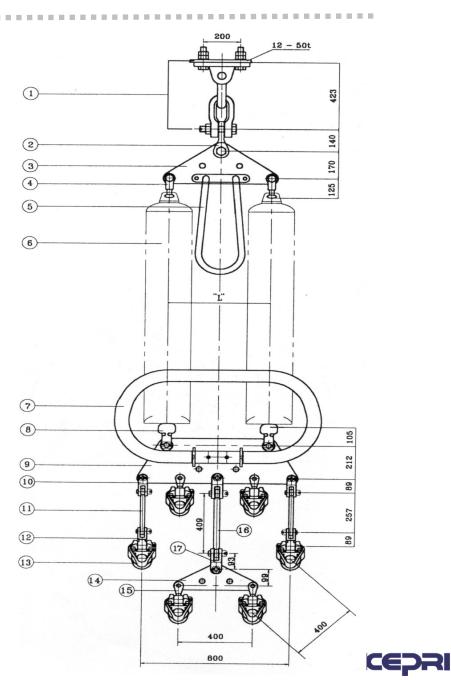
6 bundle conductor and spacer

.



11

Ground Wire & Jumper of Tension Tower



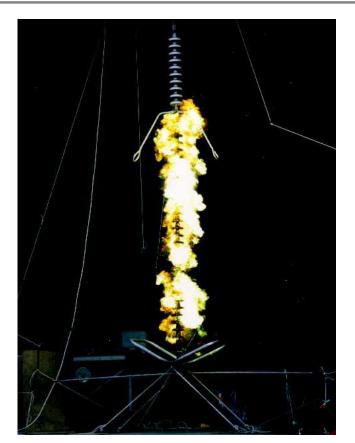
. . .

Insulator Strings and Fittings

No.	Name of Parts		
1	Tower Fitting		
2	90° Clevis Eye		
3	Yoke		
4	Ball Clevis		
5	Arcing Horn		
6	Insulators		
7	Arcing Ring		
8	Socket Clevis		
9	Yoke		
10	90° Clevis Eye		
11	Eye Link		
12	Clevis Eye		
13	Suspension Clamp		
14	Yoke		
15	90° Clevis Eye		
16	Eye Link		
17	90° Clevis Clevis		

• The Number of Insulators of KEPCO 765 kV Transmission Line

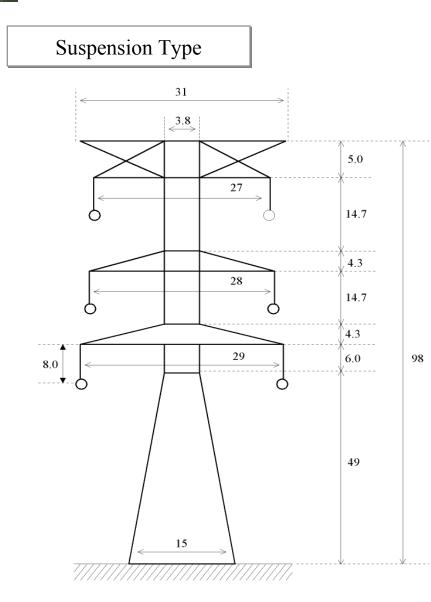
	Pollution Level		Clean		Polluted Area				
Sea			Clean I	Clean II	А		В	С	D
Level	ESDD (mg/cm ²)		~ 0.01	~ 0.03	~ 0.063		~ 0.125	~ 0.25	~ 0.5
	Туре		Normal type			Fog type			
	SUS	300kN	30	37	44	34	39	45	50
Below	303	400kN	29	36	41	33	38	45	50
1,000m	TENI	400kN	28	36	41	33	38	45	50
	TEN	530kN	24	30	35	-	-	-	-

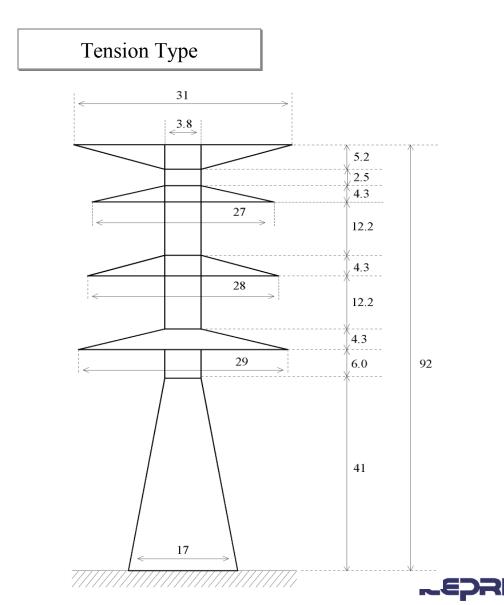


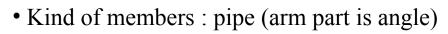
• Kinds of Insulator String

- Suspension String : 300 kN \times 2, 400 kN \times 2
- + V Suspension String for Jumper : 210 kN $\,\times\,2$
- Tension String : 400 kN \times 3

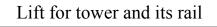
Impulse test of suspension insulator

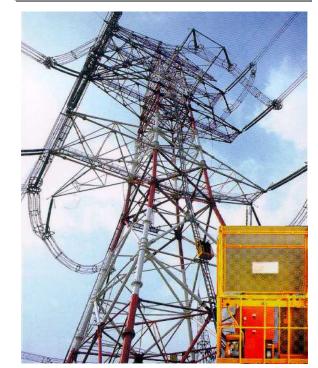

Arc-resistivity test of arcing horn





Typical 765 kV Transmission Tower


Tower Design



- Tower Type
 - Type: A, LA, B, C, D, D₀, X (dead end tower)
 - C type and above (heavy angle tower): asymmetric arm
 - Inside arm is shorter than the outside arm
- Accessories : Ladder, Rail for Lift, Resting places etc.

Manufacturing of 765 kV tubular tower

Foundation Design

Ordinary foundation

• pier & pad foundation, pier foundation, rock anchor foundation

Special foundation

• pile foundation, well foundation

Excavation of pier foundation using Telescopic

Setting the stub

Design of Ground Clearance

• Electric Field on ground level = 3.5 kV/m (resident area) 7.0 kV/m (mountain area)

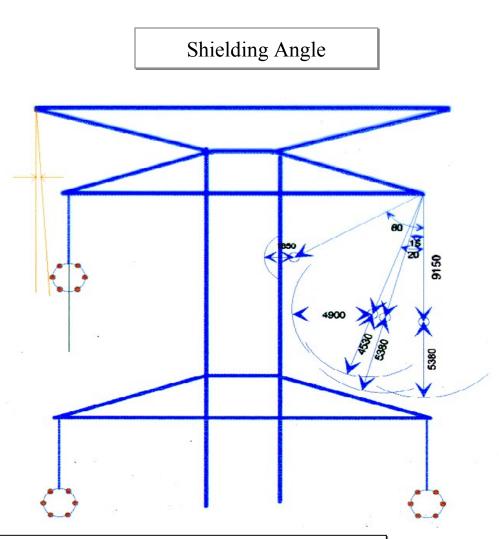
Division	Facility standard (m)	Added value (m)	Designed value	Remarks
Flat ground area	13.68	-	28	Region frequented by people
Mountainous area	12.68	-	19	Region seldom visited by people and with no tree
Railway (Including electric railway)	14.18	-	28	
Road	13.68	-	28	Express highway, national road and other
Other trees	10.88	16.2	27	
Larches	10.88	21.2	32	Collective afforestation area
Rigid Pine trees, Big cone pines	10.88	21.2	32	Collective afforestation area
Farm land	13.68	-	28	
Scheduled residential area (3 stories)	10.88	_	28	
Other structures crossing separating	10.88	4	15	Overhead electric wires, Overhead low voltage line

• Test Results from long term tests for 28 months

ITEM	Test Results	Criteria
AN	 Rainy weather: 48.4 dB(A) Fair weather: 40.9 dB(A) 	50 dB(A)
RI	• Fair weather: 43.5 ($dB\mu V/m$) = SNR 25.7 dB	SNR 24 dB
TVI	• Rainy weather: 14.2 (dB μ V/m) \approx SNR 40 dB	SNR 40 dB

Cardinal Conductor (480mm² x 6 Bundle / Phase) satisfies the KEPCO design Criteria

Insulation Design


- Power Frequency Temporary Overvoltage is below 1.2 p.u.
 - 1.2 p.u. (analysis results) + margin = 1.2 p.u.
- Line-to-Ground Fault Initiation is below 1.8 p.u.
 - No Reduction Method
- Energization & Re-energization with one step per-insertion resistor is below 1.9 p.u.
 Maximum Resistor Value 800 Ohms (Optimum = 400 Ohms)
- Simultaneous Single Line-to-Ground Fault Clearing at each circuit is below 1.9 p.u.
 Without Opening Resistor

Lighting Flashover Rate

- Calculated Condition
 - IKL : 20
 - Shielding Angle : -8 degree
 - Hill Side Angle : 10 degree (average)
 - Tower Foot Resistance : 15 ohms
 - Horn Gap Length : 4.6 m, 4.8 m (765 kV) 2.34 m (345 kV)

➔ Ground wire arm is longer than lower arm by 1 m and shielding angle of upper conductor is approximately -8 degrees.

Type of substation

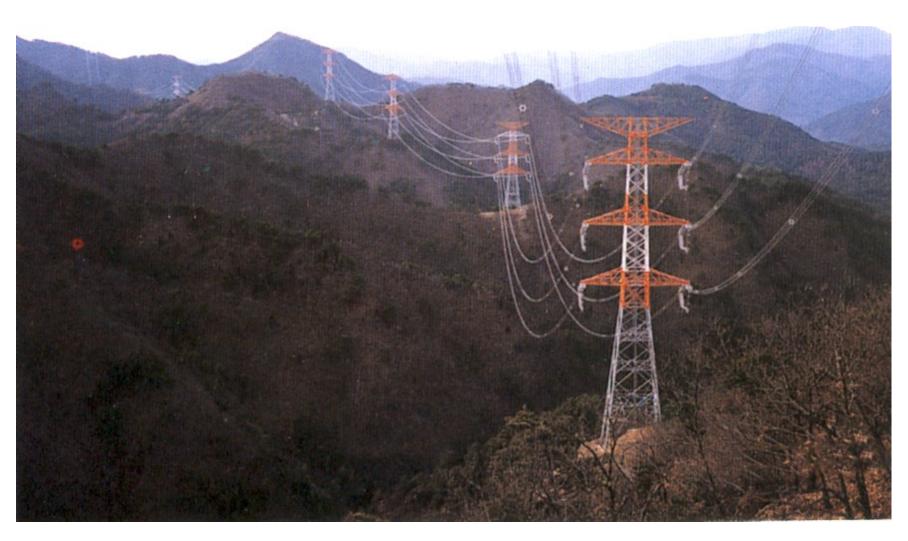
• Type : Outdoor Full GIS Type

- \bullet With no exposure of hot-line parts, except for the bushing at the front end of incoming T/L
- Most equipment is installed inside a metal enclosure which is insulated with SF6 gas
- GIS and Transformer are connected with a SF6 Gas Insulated Bus (GIB)

• BUS Scheme : Double Bus 1.5CBs Type

- Highly reliable (in case of bus failure), flexible (in power flows) and economical
- Enough operational experience with this type:
 - The standard bus scheme in the 345 kV S/S

View of 765 kV Substation



765kV Sin Ansung S/S

Completed 765kV Commercial T/L

Completed 765kV Commercial T/L

Basic Concept

- External over voltage: Suitable arrangement of high performance surge arrester
- Internal over voltage: No flash over

Internal over voltage criteria

Division		Overvoltage Ratio (p.u.)	p.u. Ratio
Power Frequency	Phase conductor	1.2	$1 \text{ p.u.} = \frac{800}{\sqrt{3}} \text{ kV}$
Overvoltage	Neutral	0.3	$1 \text{ p.u.} - \frac{1}{\sqrt{3}} \text{ kv}$
Switching	Phase to ground	1.8	$1 \text{ mu} = 800 \times \sqrt{2} \text{ kV}$
Overvoltage	Phase to phase	3.5	$1 \text{ p.u.} = 800 \times \frac{\sqrt{2}}{\sqrt{3}} \text{ kV}$

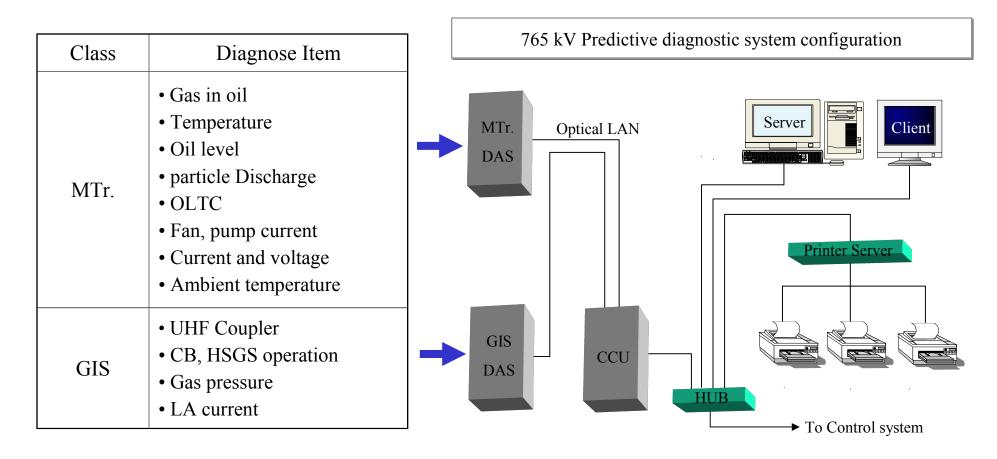
Standard Insulation Distance

Insulation Clearance	Standard	Minimum
Phase to Phase	11 m	8.5 m
Phase to Ground	7 m	5 m

- 2 tanks for each phase: possibility of transportation
- It is possible to operate 1 tank for each phase

Classification	Rating		
Туре	Auto transformer (2 tanks per each phase)		
Rated voltage	765 / √3 kV, 345 / √3 kV, 23 kV		
Capacity (1, 2)	2,000 / 3 MVA		
Capacity (3)	60 / 3 MVA		
Tap range	± 7 % (23 tap)		
% Impedance	18 % (1st-2nd wire)		
Cooling	3 steps FOA (ANSI)		
Audible noise	85 dB		

Setting the Main Transformer in Sin Ansung S/S



- On-line diagnosis of the operating status of apparatuses
- Use accumulated data to prepare an optimal maintenance and repair plan according to the condition of devices

- Full GIS type
- Colored water-permeable concrete at the switch yard surface
- A barrier of trees on the outside
- Application of 3D graphic simulation

32

765kV Transmission Line of Korea is the first 765kV double circuit AC T/L in the world

Ocharacteristics of 765kV Transmission Lines

- Bulk Carrying Capacity (8,400 MW): 5 times of 345 kV
- Efficient Utilization for Land (529 m²): 53% of 345 kV
- Cost Reduction in Construction (3,900 million Won/km): 74% of 345 kV per kW
- \bullet Decrease in Transmission Loss (0.05%): 20% of 345 kV
- Environment Affinity 765 kV Transmission Line: EMF, Corona

Exporting of Technology

• Vietnam, Myanmar, Libya, China, etc.

